EVERY CYCLE WITH CHORD HAMILTONIAN PATH IS HARMONIOUS AND ELEGANT

A. Anand Ephremnatha, A. Elumalaib

Address for Correspondence
aDepartment of Mathematics, Surya Group of Institutions, School of Engineering and Technology, Vikiravandi, Villupuram - 605652, India
bDepartment of Mathematics, Valliammai Engineering College, Kattankulathur- 603203, India

ABSTRACT
A graph G is called a cycle with chord Hamiltonian path, if G is obtained from the cycle $C_n: v_0, v_1, v_2, \ldots, v_{n-1}, v_n$, for all $n \geq 6$ by adding the chords $v_1v_{n-1}, v_0v_2, v_2v_{n-2}, \ldots, v_nv_\beta$. In this paper we prove that every cycle $C_n (n \geq 6)$ with chord Hamiltonian path is Harmonious and Elegant.

KEYWORDS: Graph labeling; Elegant labeling; Harmonious labeling; Chord Hamiltonian path.

Subject Classification Code: 05C78

1. INTRODUCTION
In 1981, Chang, Hsu, and Rogers[2] defined an elegant labeling f of a graph G with q edges as an injective function from the vertices of G to the set $\{0, 1, \ldots, q\}$ such that when each edge xy is assigned the label $f(x)+f(y) \pmod{(q+1)}$ the resulting edge labels are distinct and nonzero. Graham and Sloane[9] introduced harmonious labeling f of a graph G with q edges as an injective function from the vertices of G to the set $\{0, 1, \ldots, q-1\}$ such that when each edge xy is assigned the label $f(x)+f(y) \pmod{q}$ the resulting edge labels are distinct and they proved that caterpillars are harmonious. Aldred and McKay[1] used a computer to show that all trees with at most 26 vertices are harmonious. Gnanajothi[8] has shown that webs with odd cycles are harmonious. Graham and Sloane[9] proved that C_n is harmonious if and only if n is odd. Chang et al.[2] proved that C_n is elegant when $n \equiv 0 \pmod{2}$ or $3 \pmod{4}$ and not elegant when $n \equiv 1 \pmod{4}$. Deb and Limaye[3] have shown that triangular snakes are elegant if and only if the number of triangles is not equal to 3 \pmod{4}. A cycle with a chord is a cycle C_n with any two non-adjacent vertices joined. Elumalai and Sethuraman[5,6] defined a cycle with parallel P_2-chords as a graph obtained from a cycle $C_n (n \geq 6)$ and they proved that every cycle $C_n (n \geq 6)$ with parallel P_2-chords is graceful for $k = 3, 4, 6, 8 & 10$ and they conjecture that the cycle C_n with parallel P_2-chords is graceful for all even k, and they have also proved that for $n \geq 6$, every n-cycle with parallel chords is graceful. Elumalai and Anand Ephremnath[4] defined cycle with zigzag chords and proved that for $n \geq 8$, every n-cycle with zigzag chords is graceful.

For detail survey on graph labeling in the field of Elegant and Harmonious labeling one can refer to Gallian[7].

In this paper we define a cycle with chord Hamiltonian path and prove that every cycle $C_n (n \geq 6)$ with chord Hamiltonian path is Harmonious and Elegant.

2. Main Results
A graph G is called a cycle with chord Hamiltonian path, if G is obtained from the cycle $C_n: v_0, v_1, v_2, \ldots, v_{n-1}, v_n$, for all $n \geq 6$ by adding the chords $v_1v_{n-1}, v_0v_2, v_2v_{n-2}, \ldots, v_nv_\beta$, where

\begin{align*}
a & = \frac{n-2}{2} \quad \text{and} \quad \beta = \frac{n+2}{2} \quad \text{if} \quad n = 0, 2, 4 \pmod{6} \\
b & = \frac{n+3}{2} \quad \text{and} \quad \beta = \frac{n-1}{2} \quad \text{if} \quad n = 1, 3, 5 \pmod{6}
\end{align*}

The graphs are described below

![Diagram](image1)

Figure 1. (a) if $n = 0, 2, 4 \pmod{6}$; (b) if $n = 1, 3, 5 \pmod{6}$

Theorem 2.1: For $n \geq 6$, every cycle C_n with chord Hamiltonian path is Harmonious.

Proof: Let G be a cycle $C_n (n \geq 6)$ with chord Hamiltonian path, then G can be described as in Figure 1. Let M be the number of edges of G. To prove G is Harmonious, it is sufficient to prove it in the following six cases,
1) \(n \equiv 0 \pmod{6}, \ n \geq 6 \)
2) \(n \equiv 1 \pmod{6}, \ n \geq 6 \)
3) \(n \equiv 2 \pmod{6}, \ n \geq 6 \)
4) \(n \equiv 3 \pmod{6}, \ n \geq 6 \)
5) \(n \equiv 4 \pmod{6}, \ n \geq 6 \)
6) \(n \equiv 5 \pmod{6}, \ n \geq 6 \)

Case 1 When \(n \equiv 0 \pmod{6}, \ n \geq 6 \), let \(n = 6k \) \((k \geq 1)\) then \(M = 2n - 3 \).

(i) When \(k = 1 \) we have \(n = 6 \) and \(M = 9 \), then define \(f(v_0) = 1, \ f(v_1) = 8, \ f(v_2) = 7, \ f(v_3) = 6, \ f(v_4) = 5 \), \(f(v_5) = 0 \).

(ii) When \(n = 6k \) \((k \geq 2)\) then \(M = 2n - 3 \)
Define
\[
f(v_0) = 1, \ f(v_{n-1}) = 0, \ f\left(\frac{v_i}{2}\right) = n - 1
\]
\[
f(v_{3i+j-3}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n}{6}, 1 \leq j \leq 3
\]
\[
f(v_{n+6i+2j}) = n + 6i + j - 4, 1 \leq i \leq \frac{n-6}{6}, 1 \leq j \leq 3
\]

Case 2 When \(n \equiv 1 \pmod{6}, \ n \geq 6 \), let \(n = 6k + 1 \) \((k \geq 1)\) then \(M = 2n - 3 \).

(i) When \(k = 1 \) we have \(n = 7 \) and \(M = 11 \), then define \(f(v_0) = 1, \ f(v_1) = 10, \ f(v_2) = 9, \ f(v_3) = 8, \ f(v_4) = 6, \ f(v_5) = 7, \ f(v_6) = 0 \).

(ii) When \(n = 6k + 1 \) \((k \geq 2)\) then \(M = 2n - 3 \)
Define
\[
f(v_0) = 1, \ f(v_{n-1}) = 0, \ f\left(\frac{v_i}{2}\right) = n - 1, \ f\left(\frac{v_i}{3}\right) = n
\]
\[
f(v_{3i+j-3}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-1}{6}, 1 \leq j \leq 3
\]
\[
f(v_{n+6i+2j-2}) = n + 6i + j - 2, 1 \leq i \leq \frac{n-8}{6}, 1 \leq j \leq 3
\]

Case 3 When \(n \equiv 2 \pmod{6}, \ n \geq 6 \), let \(n = 6k + 2 \) \((k \geq 1)\) then \(M = 2n - 3 \).

(i) When \(k = 1 \) we have \(n = 8 \) and \(M = 13 \), then define \(f(v_0) = 1, \ f(v_1) = 12, \ f(v_2) = 11, \ f(v_3) = 10, \ f(v_4) = 8, \ f(v_5) = 7, \ f(v_6) = 9, \ f(v_7) = 0 \).

(ii) When \(n = 6k + 2 \) \((k \geq 2)\) then \(M = 2n - 3 \)
Define
\[
f(v_0) = 1, \ f(v_{n-1}) = 0, \ f\left(\frac{v_i}{3}\right) = n, \ f\left(\frac{v_i}{4}\right) = n - 1, \ f\left(\frac{v_i}{5}\right) = n + 1
\]
\[
f(v_{3i+j-3}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-2}{6}, 1 \leq j \leq 3
\]
\[
f(v_{n+6i+2j-2}) = n + 6i + j - 2, 1 \leq i \leq \frac{n-8}{6}, 1 \leq j \leq 3
\]

Case 4 When \(n \equiv 3 \pmod{6}, \ n \geq 6 \), let \(n = 6k + 3 \) \((k \geq 1)\) then \(M = 2n - 3 \).

Define
\[
f(v_0) = 1, \ f(v_{n-1}) = 0, \ f\left(\frac{v_i}{2}\right) = n - 1
\]
\[
f(v_{3i+j-3}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-3}{6}, 1 \leq j \leq 3
\]
\[
f(v_{n+6i+2j-2}) = n + 6i + j - 7, 1 \leq i \leq \frac{n-3}{6}, 1 \leq j \leq 3
\]

Case 5 When \(n \equiv 4 \pmod{6}, \ n \geq 6 \), let \(n = 6k + 4 \) \((k \geq 1)\) then \(M = 2n - 3 \).

Define
\[
f(v_0) = 1, \ f(v_{n-1}) = 0, \ f\left(\frac{v_i}{2}\right) = n, \ f\left(\frac{v_i}{3}\right) = n - 1
\]
\[
f(v_{3i+j-3}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-4}{6}, 1 \leq j \leq 3
\]
\[
f(v_{n+6i+2j-2}) = n + 6i + j - 6, 1 \leq i \leq \frac{n-4}{6}, 1 \leq j \leq 3
\]
Case : 6 When \(n = 5 \pmod{6}, n \geq 6 \), let \(n = 6k + 5 \ (k \geq 1) \) then \(M = 2n - 3 \).
Define
\[
f(v_0) = 1, \ f(v_{n-1}) = 0, \ f(v_{\frac{n}{2}+j}) = n+1, \ f(v_{\frac{n}{2}}) = n-1, \ f(v_{\frac{n}{2}+\frac{j}{2}}) = n
\]
\[
f(v_{3i+j-3}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-5}{6}, 1 \leq j \leq 3
\]
\[
f(v_{3i+2j-5}) = n + 6i + j - 5, 1 \leq i \leq \frac{n-5}{6}, 1 \leq j \leq 3
\]
From the above vertex labeling in all the cases we observe that the function \(f \) of the graph \(G \) with \(M \) edges is an injective function from the vertices of \(G \) to the set \(\{0, 1, \ldots, M - 1\} \), such that when each edge \(xy \) is assigned the label \(f(x) + f(y) \pmod{M} \) the resulting edge labels are distinct from 0 to \(M - 1 \). So \(G \) is Harmonious.

Theorem 2.2: For \(n \geq 6 \), every cycle \(C_n \) with chord Hamiltonian path is Elegant.

Proof:
Let \(G \) be a cycle \(C_n \) with chord Hamiltonian path, then \(G \) can be described as in Figure 1. Let \(M \) be the number of edges of \(G \). To prove \(G \) is Elegant, it is sufficient to prove it in the following six cases,
1) \(n \equiv 0 \pmod{6}, n \geq 6 \)
2) \(n \equiv 1 \pmod{6}, n \geq 6 \)
3) \(n \equiv 2 \pmod{6}, n \geq 6 \)
4) \(n \equiv 3 \pmod{6}, n \geq 6 \)
5) \(n \equiv 4 \pmod{6}, n \geq 6 \)
6) \(n \equiv 5 \pmod{6}, n \geq 6 \)

Case: 1 When \(n \equiv 0 \pmod{6}, n \geq 6 \), let \(n = 6k \ (k \geq 1) \) then \(M = 2n - 3 \).
(i) When \(k = 1 \) we have \(n = 6 \) and \(M = 9 \), then define \(f(v_0) = 2, \ f(v_1) = 9, \ f(v_2) = 8, \ f(v_3) = 7, \ f(v_4) = 6, \ f(v_5) = 0 \).
(ii) When \(n = 6k \ (k \geq 2) \) then \(M = 2n - 3 \)
Define
\[
f(v_0) = 2, \ f(v_{n-1}) = 0, \ f(v_{\frac{n}{2}+\frac{j}{2}}) = n
\]
\[
f(v_{3i+2j-5}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n}{6}, 1 \leq j \leq 3
\]
\[
f(v_{3n+2j-5}) = n + 6i + j - 5, 1 \leq i \leq \frac{n-5}{6}, 1 \leq j \leq 3
\]

Case : 2 When \(n \equiv 1 \pmod{6}, n \geq 6 \), let \(n = 6k + 1 \ (k \geq 1) \) then \(M = 2n - 3 \).
(i) When \(k = 1 \) we have \(n = 7 \) and \(M = 11 \), then define \(f(v_0) = 2, \ f(v_1) = 11, \ f(v_2) = 10, \ f(v_3) = 9, \ f(v_4) = 7, \ f(v_5) = 8, \ f(v_6) = 0 \).
(ii) When \(n = 6k + 1 \ (k \geq 2) \) then \(M = 2n - 3 \)
Define
\[
f(v_0) = 2, \ f(v_{n-1}) = 0, \ f(v_{\frac{n}{2}+\frac{j}{2}}) = n
\]
\[
f(v_{3i+2j-5}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-1}{6}, 1 \leq j \leq 3
\]
\[
f(v_{3n+2j-5}) = n + 6i + j - 5, 1 \leq i \leq \frac{n-7}{6}, 1 \leq j \leq 3
\]

Case : 3 When \(n \equiv 2 \pmod{6}, n \geq 6 \), let \(n = 6k + 2 \ (k \geq 1) \) then \(M = 2n - 3 \).
(i) When \(k = 1 \) we have \(n = 8 \) and \(M = 13 \), then define \(f(v_0) = 2, \ f(v_1) = 13, \ f(v_2) = 12, \ f(v_3) = 11, \ f(v_4) = 9, \ f(v_5) = 8, \ f(v_6) = 10, \ f(v_7) = 0 \).
(ii) When \(n = 6k + 2 \ (k \geq 2) \) then \(M = 2n - 3 \)
Define
\[
f(v_0) = 2, \ f(v_{n-1}) = 0, \ f(v_{\frac{n}{2}+\frac{j}{2}}) = n
\]
\[
f(v_{3i+2j-5}) = M - 6(i - 1) - j, 1 \leq i \leq \frac{n-2}{6}, 1 \leq j \leq 3
\]
\[
f(v_{3n+2j-5}) = n + 6i + j - 5, 1 \leq i \leq \frac{n-8}{6}, 1 \leq j \leq 3
\]

Case : 4 When \(n \equiv 3 \pmod{6}, n \geq 6 \), let \(n = 6k + 3 \ (k \geq 1) \) then \(M = 2n - 3 \).
Define
\[f(v_0) = 2, \ f(v_{n-1}) = 0, \ f(v_i) = n \]
\[f(v_{2i+2j-3}) = M - 6(i - 1) - j + 1, 1 \leq i \leq \frac{n-3}{6}, 1 \leq j \leq 3 \]
\[f(v_{n+6i+2j-7}) = n + 6i + j - 6, 1 \leq i \leq \frac{n-3}{6}, 1 \leq j \leq 3 \]

Case 5 When \(n = 4 \pmod{6} \), \(n \geq 6 \), let \(n = 6k + 4 \ (k \geq 1) \) then \(M = 2n - 3 \).

Define
\[f(v_0) = 2, \ f(v_{n-1}) = 0, \ f(v_i) = n + 1, \ f(v_j) = n \]
\[f(v_{3i+3j-3}) = M - 6(i - 1) - j + 1, 1 \leq i \leq \frac{n-4}{6}, 1 \leq j \leq 3 \]
\[f(v_{n+6i+2j-6}) = n + 6i + j - 5, 1 \leq i \leq \frac{n-4}{6}, 1 \leq j \leq 3 \]

Case 6 When \(n = 5 \pmod{6} \), \(n \geq 6 \), let \(n = 6k + 5 \ (k \geq 1) \) then \(M = 2n - 3 \).

Define
\[f(v_0) = 2, \ f(v_{n-1}) = 0, \ f(v_i) = n + 2, \ f(v_j) = n \]
\[f(v_{3i+3j-3}) = M - 6(i - 1) - j + 1, 1 \leq i \leq \frac{n-5}{6}, 1 \leq j \leq 3 \]
\[f(v_{n+6i+2j-5}) = n + 6i + j - 4, 1 \leq i \leq \frac{n-5}{6}, 1 \leq j \leq 3 \]

From the above vertex labeling in all the cases we observe that the function \(f \) of the graph \(G \) with \(M \) edges is an injective function from the vertices of \(G \) to the set \(\{0, 1, \ldots, M\} \), such that when each edge \(xy \) is assigned the label \(f(x) + f(y) \pmod{(M+1)} \) the resulting edge labels are distinct and non zero from 1 to \(M \). So \(G \) is Elegant.

Examples:

Figure 2. Harmonious labeling for \(n=10, M=17 \)

Figure 3. Elegant labeling for \(n=11, M=19 \)

CONCLUSION

In this paper we defined chord Hamiltonian path on a cycle \(C_n (n \geq 6) \) as shown in Figure 1, furthermore in theorem 2.1, we have shown that every cycle \(C_n (n \geq 6) \) with chord Hamiltonian path is Harmonious and also in theorem 2.2 we have shown that every cycle \(C_n (n \geq 6) \) with chord Hamiltonian path is Elegant.

REFERENCES

Int J Adv Engg Tech/Vol. VII/Issue II/April-June,2016/01-04